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Studies on Performance of Cellulose Acetate and
Poly(Ethelene Glycol) Blend Ultrafiltration Membranes
Using Mixture Design Concept of Design of Experiments

G. Arthanareeswaran
M. Muthukumar
M. Dharmendirakumar
D. Mohan
M. Raajenthiren
Department of Chemical Engineering, AC College of Technology,
Anna University, Chennai, India

Cellulose acetate (CA) membranes have several advantages over other membranes
due to their moderate flux, high salt rejection properties, renewable source of raw
material, etc. Membrane compositions containing different concentrations of CA,
polyethylene glycol (PEG 600) as additive and N,N–dimethyl formamide (DMF)
as solvent have been prepared using phase inversion technique based on the mix-
ture design concept of design of experiments. The prepared membranes have been
characterized for permeate flux, membrane hydraulic resistance, and separation of
proteins such as pepsin, egg albumin (EA), and bovine serum albumin (BSA).
Using statistical techniques, the experimental data have been analyzed and a suit-
able model was suggested for predicting the optimal level of response as a function
of the input variable. The influence of variation of the CA, DMF, and PEG 600 on
the asymmetric membrane properties has also been reported.

Keywords: cellulose acetate, design of experiments, phase behavior, polymeric
membranes, separation techniques

INTRODUCTION

Polymeric materials and their blends have played an important role in
many separation applications such as ultrafiltration (UF), microfiltra-
tion, and nanofiltration [1–3]. The basic principles of membrane
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separation and its commercial importance have been extensively
reported [4–5]. For preparation of membranes with better perform-
ance, the raw material should be tolerant to wide temperature range
and pH apart from yielding membranes with wider range of pore sizes.
Michaels has discussed the chemical constitution of these polymer
membranes and their potential biomedical applications [6]. It is also
a pressure driven process used to separate or concentrate macro
solutes. Cellulose acetate (CA) is one of the most universally used
materials for preparing ultrafiltration and reverse osmosis (RO) mem-
branes. Cellulose acetate membranes have been prepared by many
researchers and characterized for their compaction, hydraulic per-
meability, and osmotic permeability properties [7–8]. Cellulose acetate
and its derivatives are suitable raw materials for membrane prep-
aration, because of advantages such as moderate flux, high salt rejec-
tion properties, cost effectiveness, relatively easy manufacture,
renewable source of raw material, and non-toxicity. The effect of cast
solution thickness on the formation of macro voids in the membrane
forming ternary cellulose acetate=acetone=water system by wet phase
inversion technique has been reported [9].

Ever since the membrane synthesis results reported by Loeb and
Sourirajan in the early sixties [10], many studies have been carried
out for better understanding of the phenomena involved in the phase
inversion process. Many studies have been done to improve the ther-
mal or ultrafiltration properties of the CA membranes by the addition
of organic or inorganic substances [11–12]. Recently, it has been
shown that the addition of borates and phosphates improves the ther-
mal properties of CA [11]. Generally, additives are added to improve
the polymer properties thus enabling wider application of CA.

Using statistical techniques, a set of combinations that variables
which influence the properties of interest can be designed without
the need for studying all possible combinations practically [13]. Based
on the experimental results, using suitable models, the effect of vari-
ables on the properties can be predicted. Several studies have been
carried out to design experiments, primarily process parameters,
based on response surface methodology using Box-Behnken design of
experiments [14–17]. Among the different techniques available for
optimizing inputs with constraints, mixture design technique is highly
appropriate. Mixture design technique is preferred because it requires
relatively few experimental combinations of the variables to estimate
potentially complex response functions [18]. In the present investi-
gation, the effect of addition of polyethylene glycol 600 (PEG 600) with
CA in the preparation of membranes on permeate flux and hydraulic
resistance for pure water as well as rejection of proteins such as pepsin
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(35 kDa), egg albumin (45 kDa), and bovine serum albumin (66 kDa)
have been studied using a set of experiments based on mixture design
technique.

METHODOLOGY AND DESIGN OF EXPERIMENTS

The classical approach of changing one variable at a time (OVAT) and
studying the effect of that variable on the response is a complicated
technique, particularly in a multivariable system, or if more than
one response are of importance. Design of experiments comprises a
group of statistical techniques, which can be used for model building,
model exploitation, and optimizing such multivariable systems
[19–22].

Two such techniques are the mixture design and response surface
methodology, where the primary approach to the general problem is
to optimize a mixture whose properties depend on the proportions of
the component materials. In these techniques, a set of trial batches
covering a chosen range of proportions for each component is set up
according to established statistical procedure, rather than selecting
one starting point. Trial batches are performed and results are ana-
lyzed using standard statistical methods that yield reliable estimates
of parameters from empirical models for each performance criterion.
Each response is expressed as an algebraic function of factors. Once
a response is characterized by an equation, any number of analyses
is possible. It allows calculations to be made of the response at inter-
mediate levels, which were not experimentally studied and shows
the direction in which to move, if one wishes to change the input levels
so as to decrease or increase the response. For instance, the user could
determine which mixture proportions would yield a desired response.
Similarly, the user could optimize any response function subject to
constraints on the others like determining the lowest cost mixture
with strength greater than the specified strength.

In mixture design approach, the total amount of the product is fixed
and is constrained to sum 1. For each statistical combination, all
properties of interest would be measured and empirical models for
each property as a function of the variables would be determined from
regression analysis. The advantage of the mixture approach is that the
experimental region of interest is more naturally defined. To simplify
calculations and analysis, the actual variable ranges are usually
transformed to dimensionless coded variables with a range of �1.
Intermediate values are also translated similarly.

Use of an appropriate mixture experiment design allows estimation
of a full quadratic model for each response. The mathematical
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relationship between three independent variables and the response
can be approximated by the second order polynomial:

Y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b11X2
1 þ b22X2

2

þ b33X2
3 þ b12X1X2 þ b13X1X3 þ b23X2X3 ð1Þ

where b0 is a constant; b1, b2, b3 are linear coefficients; b12, b13, b23 are
cross product coefficients; b11, b22, b33 are quadratic coefficients; and
X1 ¼ (A� X0)=DX, X1 ¼ coded value of the variable A; X0 ¼ value of
A at the center point; DX ¼ step change; X2 ¼ (B� X0)=DX and so on
where A, B, and so on are the input variables.

MATERIALS AND METHODS

Materials

Commercial grade cellulose acetate (acetyl content 39.99 wt%) was
procured from Mysore Acetate and Chemicals Company Ltd., India.
Analar grade N,N-dimethyl formamide (DMF) from Qualigens Fine
Chemicals, Glaxo India Ltd. was procured and dehydrated through
molecular sieves (Type—4 Å) for removing moisture, and stored in
dried condition prior to use. Other solvents such as acetone and meth-
anol as well as surfactant, sodium lauryl sulphate (SLS), of AR grade
were procured from Qualigens Fine Chemicals Ltd., India. PEG 600
was procured from Merck (India) Ltd. and used as such, as an additive
for the whole study. Proteins, namely, bovine serum albumin (BSA),
Mw ¼ 69 kDa, and pepsin, Mw ¼ 35 kDa, were purchased from SRL
Chemicals Ltd., India and used as received. Egg albumin (EA),
Mw ¼ 45 kDa was obtained from CSIR Biochemical Centre, New Delhi,
India. Deionized and distilled water was used for all the studies.

Design of Experiments

Mixture design technique was employed in this investigation to dis-
cover the optimal formulation of CA, additive, and solvent. The chosen
variables CA, solvent, and additive were coded as X1, X2, and X3,
respectively. The lower and upper level of each variable were desig-
nated as 0 and þ1, respectively, and listed in Table 1. A design expert
software (State-Ease Inc., Minneapolis, MN) employing multiple
regression analysis was used to find different combinations of CA,
solvent, and additive. A total of 14 experiments were necessary to
estimate the 9 coefficients of the model. The mixture design combina-
tions for experimentation and their corresponding responses from
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various studies are listed in Table 2. The responses studied were
permeate flux, hydraulic resistance, and rejections of pepsin, egg
albumin, and bovine serum albumin. Using the design expert software,
the coefficients for different responses and optimum values were
predicted.

Preparation and Characterization of the Membrane

Sets of 14 membranes were prepared using the following procedure
based on the combinations (Table 2) derived from design expert soft-
ware. In each trial, CA was dissolved in DMF solvent containing
PEG 600 as additive. The components were mixed for 3 to 4 h at
around 80� 5�C to attain homogeneous solution. The solution was
allowed to stand for 0.5 h to eliminate air bubbles. The casting of the
membranes was carried out as reported [23]. Each prepared mem-
brane was cut in to desired size needed for fixing it up in the ultra-
filtration kit of 38.5 cm2 area. Each membrane was initially
hydrostatically compressed in the ultrafiltration test cell at a pressure
of 414 kPa for 5–6 h. This makes the membrane to attain steady flux.

Permeate Flux

Membranes after compaction were subjected to pure water flux at
transmembrane pressure of 345 kPa. The flux was measured under
steady state flow, that is after every 1 h for 4 h. The permeate flux
was determined using Eq. 2:

Jw ¼
Q

A � DT
ð2Þ

where, Jw ¼ permeate flux, l m�2 h�1; Q ¼ quantity of permeate, l;
A ¼ membrane area, m2; DT ¼ sampling time, h.

TABLE 1 Range of Variables and Their Coded Form

Lower limit Upper limit

Variable % Code % Code

CA 10 0 25 þ1
Solvent 72.5 0 82.5 þ1
Additive 2.5 0 10 þ1

Cellulose Acetate and Poly(ethelene glycol) Blend Membranes 1137
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Membrane Hydraulic Resistance (Rm)

Membrane hydraulic resistance is an important parameter, that deci-
des the productivity of the membranes at a given pressure [24]. This
would be more useful to apply the membrane for a particular environ-
ment and to identify the suitability of the membranes for a particular
membrane process. Membrane hydraulic resistance (Rm) was evalu-
ated by measuring permeate flux at different transmembrane pres-
sures such as 69, 138, 207, 276, and 345 kPa after compaction. The
resistance of the membrane was evaluated from the slope obtained
by plotting the transmembrane pressure difference (DP) vs. permeate
flux (Jw) using Eq. 3:

Rm ¼
DP

Jw
ð3Þ

Protein Rejection

After mounting the membrane in the UF cell, the chamber was filled
with individual protein solution and immediately pressurized under
nitrogen atmosphere to the desired level (345 kPa) and maintained
constant throughout the run. Proteins such as BSA, EA, and pepsin
were dissolved (0.1 wt%) in phosphate buffer (0.5 M, pH 7.2) and used
as standard feed solutions.

For all experiments, the concentration of feed solution was kept con-
stant. Permeate was collected over measured time intervals in gradu-
ated tubes and the tube contents were analyzed for protein content by
UV-visible spectrophotometer (Shimadzu, Model UV-160A) at 280 nm
(kmax). The percent protein separation, %SR, was calculated from the
concentration of feed and permeates [25] using Eq. 4:

%SR ¼ 1� Cp

Cf

� �
� 100 ð4Þ

where, Cp and Cf are concentrations of permeate and feed, respectively.

RESULTS AND DISCUSSION

The purpose of this investigation is to derive optimal composition of
inputs for improved membrane properties such as permeate flux,
hydraulic resistance, and rejections of proteins using mixture
design technique. The statistically designed combinations were
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experimentally studied and the responses analyzed statistically. The
responses (properties) studied were permeate flux, hydraulic resist-
ance, and rejections of pepsin, EA, and BSA, which are designated
as Y1, Y2, Y3, Y4, and Y5. The individual responses have been predicted
by the following regression equations, which give the relationship
between the input variables and the response.

Y1 ¼ 9:993 � X1 þ 24:576 � X2 þ 140:401 � X3 � 21:498 � X1 � X2

� 127:863 � X1 � X3 þ 144:904 � X2 � X3 ð5Þ

Y2 ¼ 40:362 � X1 þ 45:254 � X2 þ 25:100 � X3 � 63:479 � X1 � X2

� 89:162 � X1 � X3 � 108:714 � X2 � X3 ð6Þ

Y3 ¼ 69:666 � X1 þ 86:039 � X2 þ 85:616 � X3 � 1:483 � X1 � X2

þ 3:140 � X1 � X3 þ 6:582 � X2 � X3 ð7Þ

Y4 ¼ 43:225 � X1 þ 12:656 � X2 � 36:771 � X3 � 18:841 � X1 � X2

þ 123:586 � X1 � X3 þ 69:530 � X2 � X3 ð8Þ

Y5 ¼ 53:530 � X1 � 28:14 � X2 � 138:83 � X3 þ 102:463 � X1 � X2

þ 318:714 � X1 � X3 þ 380:882 � X2 � X3 ð9Þ

The equations are based on the quadratic model because it fits well
with the experimental data unlike other models such as linear, cubic,
and two factor interactions. The fitness of the model for each response
can be explained using model summary statistics and analysis of
variance.

Model Summary Statistics

Model summary statistics provide several comparative measures for
model selection. R squared statistics is the correlation coefficient
between the experimental response and the predicted response, which
should be nearly 1 for a particular model to be significant [19].
Adjusted R squared parameter provides similar correlation after
ignoring the insignificant model terms. It should also have good agree-
ment with predicted R squared parameter for the model to be fit.
Model summary statistics for the selected models for different
responses are given in Table 3. It is seen that the special cubic model
has higher R squared statistics than quadratic model; however, the
correlation between adjusted R squared and predicted R squared
values is good in quadratic model compared to special cubic, as clearly
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seen in hydraulic resistance and rejection of pepsin. Similarly in the
case of cubic model, although the R squared values are higher than
the quadratic model, the predicted R squared values are not generated
by the design and hence not in good agreement with the adjusted R
squared values. Thus, the design software suggests quadratic model
for further navigation of the design space. It is observed that the cor-
relation coefficient (R squared) is 0.99 for permeate flux, 0.97 for
hydraulic resistance, 0.94 for pepsin, 0.99 for EA, and 0.99 for BSA
in the quadratic model indicating high degree of correlation between
the experimental and predicted response. It can also be seen from
the model that predicted R squared is in good agreement with adjusted
R squared [19].

Analysis of Variance (ANOVA)

ANOVA for each response for the selected quadratic model is given
in Tables 4–8. Prob > F values are much less than 0.05, indicating
that the model is significant for all the responses confirming the fit-
ness of the selected model. Prob > F values for AB in permeate flux

TABLE 3 Model Summary Statistics

Property Source Std. dev. R-squared
Adjusted

R-squared
Predicted
R-squared

Permeate flux Linear 18.38138 0.821156 0.788639 0.685671
Quadratic 3.553564 0.995139 0.992101 0.980485
Special cubic 3.264807 0.99641 0.993332 0.978275
Cubic 2.169222 0.999094 0.997056 —

Hydraulic resistance Linear 4.575826 0.881712 0.860205 0.823676
Quadratic 2.765076 0.968587 0.948953 0.896754
Special cubic 2.932978 0.969074 0.942566 0.836182
Cubic 1.495581 0.995405 0.985066 —

Rejection of pepsin Linear 5.7323 0.859424 0.833865 0.772856
Quadratic 4.306711 0.942291 0.906223 0.823285
Special cubic 3.328219 0.969843 0.943995 0.768626
Cubic 2.277776 0.991929 0.973768 —

Rejection of EA Linear 9.79945 0.728953 0.679672 0.614174
Quadratic 0.733963 0.998894 0.998203 0.99628
Special cubic 0.607271 0.999338 0.99877 0.995495
Cubic 0.439218 0.999802 0.999356 —

Rejection of BSA Linear 10.95435 0.73633 0.68839 0.618975
Quadratic 0.222261 0.999921 0.999872 0.999672
Special cubic 0.192308 0.999948 0.999904 0.999689
Cubic 0.122014 0.999988 0.999961 —
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and AB and BC in pepsin rejection are higher than 0.05, which indi-
cates that the interaction between the respective inputs are not sig-
nificant. The predicted response obtained from the regression Eqs. 5
to 9 by substituting the coded values of the variables corresponding

TABLE 5 ANOVA for Quadratic Model of Hydraulic Resistance

Source Sum of squares DF Mean square F value Prob > F

Model 1885.949 5 377.1898 49.33395 <0.0001
Linear mixture 1716.794 2 858.3969 112.2727 <0.0001
AB 99.49933 1 99.49933 13.01386 0.0069
AC 72.9456 1 72.9456 9.540807 0.0149
BC 74.76107 1 74.76107 9.778259 0.0141
Residual 61.16514 8 7.645643
Lack of fit 52.21809 4 13.05452 5.836347 0.0579
Pure error 8.94705 4 2.236763
Cor total 1947.114 13

TABLE 6 ANOVA for Quadratic Model of Pepsin Rejection

Source Sum of squares DF Mean square F value Prob > F

Model 2422.843 5 484.5686 26.12545 <0.0001
Linear mixture 2209.773 2 1104.887 59.56982 <0.0001
AB 8.765342 1 8.765342 0.472582 0.5112
AC 140.1459 1 140.1459 7.555947 0.0251
BC 30.58039 1 30.58039 1.648738 0.2351
Residual 148.3821 8 18.54776
Lack of fit 127.629 4 31.90725 6.149892 0.0532
Pure error 20.75305 4 5.188263
Cor total 2571.225 13

TABLE 4 ANOVA for Quadratic Model of Permeate Flux

Source Sum of squares DF Mean square F value Prob > F

Model 20680.36 5 4136.073 327.5366 <0.0001
Linear mixture 17064.76 2 8532.38 675.6812 <0.0001
AB 11.41207 1 11.41207 0.903724 0.3696
AC 150.0133 1 150.0133 11.87959 0.0087
BC 132.8199 1 132.8199 10.51804 0.0118
Residual 101.0225 8 12.62782
Lack of fit 82.20044 4 20.55011 4.36723 0.0912
Pure error 18.8221 4 4.705525
Cor total 20781.39 13
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to different combinations are compared with the experimental values
in Table 9. The predicted values are found to be in good correlation
with the experimental values, proving the fitness of the selected
model [19].

Effect of Variables on Response

Contour plots are response surface plots that help in the identification
of the type of interaction between the test variables and the responses
[19]. 3-D contour plots facilitate to visualize the effect of variables on
the responses in a three-dimensional space. The effects of variables on
responses such as permeate flux, hydraulic resistance, and rejection of
pepsin, EA and BSA are given in Figures 1–5. The converging contour
lines indicate that the interaction between the variables and response
is significant, which is well pronounced in EA and BSA as shown in

TABLE 7 ANOVA for Quadratic Model of Egg Albumin Rejection

Source Sum of squares DF Mean square F value Prob > F

Model 3892.885 5 778.5769 1445.284 <0.0001
Linear mixture 2840.873 2 1420.436 2636.777 <0.0001
AB 259.2364 1 259.2364 481.2244 <0.0001
AC 932.0587 1 932.0587 1730.194 <0.0001
BC 917.659 1 917.659 1703.464 <0.0001
Residual 4.309614 8 0.538702
Lack of fit 3.537964 4 0.884491 4.584933 0.0847
Pure error 0.77165 4 0.192913
Cor total 3897.194 13

TABLE 8 ANOVA for Quadratic Model of Bovine Serum Albumin Rejection

Source Sum of squares DF Mean square F value Prob > F

Model 5005.762 5 1001.152 20266.33 <0.0001
Linear mixture 3686.182 2 1843.091 37309.69 <0.0001
AB 209.0313 1 209.0313 4231.42 <0.0001
AC 1237.171 1 1237.171 25044.06 <0.0001
BC 1170.99 1 1170.99 23704.34 <0.0001
Residual 0.395198 8 0.0494
Lack of fit 0.335648 4 0.083912 5.636412 0.0613
Pure error 0.05955 4 0.014888
Cor total 5006.157 13
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Figures 4 and 5. The linear contours show that the interaction of the
input variables on the response in not much significant, which is
slightly expressed in permeate flux as seen in Figure 1.

Permeate Flux and Membrane Hydraulic Resistance

Piepel graphs of coded input variables for all the responses are
shown in Figures 6–10. It is seen that in the case of permeate flux
(Figure 6), as the CA content increases the permeate flux
decreases; however, the change in solvent content does not alter
the permeate flux significantly. It is essential to mention that an
increasing additive content increases the permeate flux linearly.

FIGURE 1 3-D contour diagram showing effect of individual variables on the
permeate flux.
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This increase in flux upon increase in additive concentration may
be due to the fact that PEG 600 being hygroscopic are leached
out of the membranes upon gelation, leading to the formation of
macrovoids [26–27]. The relatively high flux in the presence of
additive may be due to the increase in the network pore size.
The lower flux of CA without any additive may be due to higher
packing density of the polymer, which results in reduced size of
the pores. In the case of hydraulic resistance, the response is sig-
nificantly influenced by the variables CA and solvent, as seen from
Figure 7. With increasing CA and solvent, the hydraulic resistance

FIGURE 2 3-D contour diagram showing effect of individual variables on
hydraulic resistance.
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decreases up to an optimum level and thereafter increases linearly.
The additive is inversely contributing to the hydraulic resistance.
The increase in additive concentration results in significant
decrease in the hydraulic resistance. The reduced resistance is
due to the instability of pores, which are formed by leaching out
the PEG 600 during the coagulation process in membrane casting
technique. Furthermore the presence of PEG increases this gap
further due to the formation of macro voids on the membrane sur-
face resulting from faster rate of leaching of PEG at higher concen-
tration gradient from casting solution during gelation. Similar
observations have also been observed by [28–29].

FIGURE 3 3-D contour diagram showing effect of individual variables on
pepsin rejection.
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Protein Rejection

Fractionation of proteins using ultrafiltration membrane has not been
successfully scaled up to industrial level because selectivity poses a
threat to the industry. The interaction of the solutes with the mem-
brane results in adsorptive fouling and interferes with the perform-
ance of the membranes. From Figure 2, among the proteins studied,
BSA was found to have higher rejection. These trends may be due to
the molecular weights of BSA, EA, and pepsin, which are 69, 45,
and 35 kDa, respectively. The rejection of pepsin is significantly

FIGURE 4 3-D contour diagram showing effect of individual variables on egg
albumin rejection.
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increased upon increase in the concentration of CA and decrease in the
concentration of solvent as seen in Figure 8. However, the presence of
additive increases the pepsin rejection up to an optimum level after
which the rejection decreases abruptly. This may be due to the forma-
tion of bigger pores in the membranes in the presence of additive and
CA in an optimum ratio. In the case of EA and BSA rejection, the
increase in CA and solvent as well as additive results in the increase
of rejection of proteins up to optimum levels, after which the rejection
decreases appreciably as shown in Figures 9 and 10.

FIGURE 5 3-D contour diagram showing effect of individual variables on
bovine serum albumin rejection.
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FIGURE 6 Trace plot (Piepel) for permeate flux.

FIGURE 7 Trace plot (Piepel) for hydraulic resistance.
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The predicted optimum level of combinations of input variables
along with predicted individual responses are given in Table 10. It is
seen that the input combinations for the individual responses corre-
sponding to the predicted optimum are different from the experi-
mental maximum and also different from the practically studied
combinations, except in the case of permeate. Thus, statistical techni-
ques helps in predicting optimum combinations of input variables by
analyzing the experimental data using suitable mathematical models
and provides the best combination, which otherwise requires numer-
ous experimental studies. In all the membranes, irrespective of PEG
600 concentration, the order of percentage protein rejection was found
to be BSA>EA>Pepsin. The reason for this trend may be explained
by the fact that the flux of the proteins is inversely proportional to
their size [30].

FIGURE 8 Trace plot (Piepel) for pepsin rejection.
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CONCLUSION

A series of cellulose acetate membranes was prepared based on mix-
ture design concept of design of experiments, using three input vari-
ables namely cellulose acetate, solvent, and additive. The prepared
membranes were characterized by studying permeate flux and
hydraulic resistance. Separations of proteins of different molecular
weights were also carried out. All the responses were statistically ana-
lyzed. The effects of variables on the responses were discussed. Among
the different models analyzed, quadratic model fitted well with the
experimental data. Equations were suggested for individual
responses, based on which optimum values could be predicted with
high degree of accuracy, within the experimental range of variables
studied. Depending on the application requirements, any particular

FIGURE 9 Trace plot (Piepel) for EA rejection.
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FIGURE 10 Trace plot (Piepel) for BSA rejection.

TABLE 10 Optimum Combinations of Input Variables Suggested for
Individual Properties

Variable (%)

Response Predicted optimum CA Solvent Additive

Permeate flux (lm�2h�1) 118.7 10 80 10
Hydraulic resistance (kPa=lm�2h�1) 40.1 24.94 72.53 2.53
Rejection of pepsin (%) 47.1 22.35 72.5 5.15
Rejection of EA (%) 65.1 19.25 75.01 5.74
Rejection of BSA (%) 77.9 20.61 74.23 5.16
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response can be chosen, optimized, and the corresponding input com-
binations could be arrived at, thus proving the significance of statisti-
cal methods in model building and prediction of experimental data
with limited number of experiments.
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